

CS-570
 Statistical Signal Processing

Lecture 2: Review of basic concepts

Spring Semester 2019

Grigorios Tsagkatakis

Today's Objectives

- Review of linear algebra

Disclaimer: Material used:

- Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville
- Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Stephen Boyd ,Lieven Vandenberghe http://vmls-book.stanford.edu/

Vectors

- a vector is an ordered list of numbers
- written as

$$
\left[\begin{array}{r}
-1.1 \\
0.0 \\
3.6 \\
-7.2
\end{array}\right] \text { or }\left(\begin{array}{r}
-1.1 \\
0.0 \\
3.6 \\
-7.2
\end{array}\right)
$$

or ($-1.1,0,3.6,-7.2$)

- numbers in the list are the elements (entries, coefficients, components)
- number of elements is the size (dimension, length) of the vector
- vector above has dimension 4; its third entry is 3.6
- vector of size n is called an n-vector
- numbers are called scalars

Zeros, ones and unit vectors

- n-vector with all entries 0 is denoted 0_{n} or just 0
- n-vector with all entries 1 is denoted $\mathbf{1}_{n}$ or just $\mathbf{1}$
- a unit vector has one entry 1 and all others 0
- denoted e_{i} where i is entry that is 1
- unit vectors of length 3:

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Sparsity

- a vector is sparse if many of its entries are 0
- can be stored and manipulated efficiently on a computer
- $\mathbf{n n z}(x)$ is number of entries that are nonzero
- examples: zero vectors, unit vectors

Linear combinations

- for vectors a_{1}, \ldots, a_{m} and scalars $\beta_{1}, \ldots, \beta_{m}$,

$$
\beta_{1} a_{1}+\cdots+\beta_{m} a_{m}
$$

is a linear combination of the vectors

- $\beta_{1}, \ldots, \beta_{m}$ are the coefficients
- a very important concept
- a simple identity: for any n-vector b,

$$
b=b_{1} e_{1}+\cdots+b_{n} e_{n}
$$

Example

two vectors a_{1} and a_{2}, and linear combination $b=0.75 a_{1}+1.5 a_{2}$

Flop counts

- computers store (real) numbers in floating-point format
- basic arithmetic operations (addition, multiplication, ...) are called floating point operations or flops
- complexity of an algorithm or operation: total number of flops needed, as function of the input dimension(s)
- this can be very grossly approximated
- crude approximation of time to execute: computer speed/flops
- current computers are around $1 \mathrm{Gflop} / \mathrm{sec}\left(10^{9} \mathrm{flops} / \mathrm{sec}\right)$
- but this can vary by factor of 100

Complexity of vector addition, inner product

- $x+y$ needs n additions, so: n flops
- $x^{T} y$ needs n multiplications, $n-1$ additions so: $2 n-1$ flops
- we simplify this to $2 n$ (or even n) flops for $x^{T} y$
- and much less when x or y is sparse

Superposition and linear functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ means f is a function mapping n-vectors to numbers
- f satisfies the superposition property if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all numbers α, β, and all n-vectors x, y

- be sure to parse this very carefully!
- a function that satisfies superposition is called linear

The inner product function

- with a an n-vector, the function

$$
f(x)=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

is the inner product function

- $f(x)$ is a weighted sum of the entries of x
- the inner product function is linear:

$$
\begin{aligned}
f(\alpha x+\beta y) & =a^{T}(\alpha x+\beta y) \\
& =a^{T}(\alpha x)+a^{T}(\beta y) \\
& =\alpha\left(a^{T} x\right)+\beta\left(a^{T} y\right) \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

. . .and all linear functions are inner products

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear
- then it can be expressed as $f(x)=a^{T} x$ for some a
- specifically: $a_{i}=f\left(e_{i}\right)$
- follows from

$$
\begin{aligned}
f(x) & =f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
& =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right)
\end{aligned}
$$

Affine functions

- a function that is linear plus a constant is called affine
- general form is $f(x)=a^{T} x+b$, with a an n-vector and b a scalar
- a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is affine if and only if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all α, β with $\alpha+\beta=1$, and all n-vectors x, y

- sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

f is linear

g is affine, not linear

First-order Taylor approximation

- suppose f : $\mathbf{R}^{n} \rightarrow \mathbf{R}$
- first-order Taylor approximation of f, near point z :

$$
\hat{f}(x)=f(z)+\frac{\partial f}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right)
$$

- $\hat{f}(x)$ is very close to $f(x)$ when x_{i} are all near z_{i}
- \hat{f} is an affine function of x
- can write using inner product as

$$
\hat{f}(x)=f(z)+\nabla f(z)^{T}(x-z)
$$

where n-vector $\nabla f(z)$ is the gradient of f at z,

$$
\nabla f(z)=\left(\frac{\partial f}{\partial x_{1}}(z), \ldots, \frac{\partial f}{\partial x_{n}}(z)\right)
$$

Example

Regression model

- regression model is (the affine function of x)

$$
\hat{y}=x^{T} \beta+v
$$

- x is a feature vector; its elements x_{i} are called regressors
- n-vector β is the weight vector
- scalar v is the offset
- scalar \hat{y} is the prediction (of some actual outcome or dependent variable, denoted y)

Example

- y is selling price of house in $\$ 1000$ (in some location, over some period)
- regressor is

$$
x=\text { (house area, \# bedrooms) }
$$

(house area in 1000 sq.ft.)

- regression model weight vector and offset are

$$
\beta=(148.73,-18.85), \quad v=54.40
$$

- we'll see later how to guess β and v from sales data

Example

Example

House	x_{1} (area)	x_{2} (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Linear dependence

- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ (with $k \geq 1$) is linearly dependent if

$$
\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}=0
$$

holds for some $\beta_{1}, \ldots, \beta_{k}$, that are not all zero

- equivalent to: at least one a_{i} is a linear combination of the others
- we say ' a_{1}, \ldots, a_{k} are linearly dependent'
- $\left\{a_{1}\right\}$ is linearly dependent only if $a_{1}=0$
- $\left\{a_{1}, a_{2}\right\}$ is linearly dependent only if one a_{i} is a multiple of the other
- for more than two vectors, there is no simple to state condition

Example

- the vectors

$$
a_{1}=\left[\begin{array}{c}
0.2 \\
-7 \\
8.6
\end{array}\right], \quad a_{2}=\left[\begin{array}{c}
-0.1 \\
2 \\
-1
\end{array}\right], \quad a_{3}=\left[\begin{array}{c}
0 \\
-1 \\
2.2
\end{array}\right]
$$

are linearly dependent, since $a_{1}+2 a_{2}-3 a_{3}=0$

- can express any of them as linear combination of the other two, e.g.,

$$
a_{2}=(-1 / 2) a_{1}+(3 / 2) a_{3}
$$

Linear independence

- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ (with $k \geq 1$) is linearly independent if it is not linearly dependent, i.e.,

$$
\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}=0
$$

holds only when $\beta_{1}=\cdots=\beta_{k}=0$

- we say ' a_{1}, \ldots, a_{k} are linearly independent'
- equivalent to: no a_{i} is a linear combination of the others
- example: the unit n-vectors e_{1}, \ldots, e_{n} are linearly independent

Linear combinations of linearly independent vectors

- suppose x is linear combination of linearly independent vectors a_{1}, \ldots, a_{k} :

$$
x=\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}
$$

- the coefficients $\beta_{1}, \ldots, \beta_{k}$ are unique, i.e., if

$$
x=\gamma_{1} a_{1}+\cdots+\gamma_{k} a_{k}
$$

then $\beta_{i}=\gamma_{i}$ for $i=1, \ldots, k$

- this means that (in principle) we can deduce the coefficients from x
- to see why, note that

$$
\left(\beta_{1}-\gamma_{1}\right) a_{1}+\cdots+\left(\beta_{k}-\gamma_{k}\right) a_{k}=0
$$

and so (by linear independence) $\beta_{1}-\gamma_{1}=\cdots=\beta_{k}-\gamma_{k}=0$

Independence-dimension inequality

- a linearly independent set of n-vectors can have at most n elements
- put another way: any set of $n+1$ or more n-vectors is linearly dependent

Basis

- a set of n linearly independent n-vectors a_{1}, \ldots, a_{n} is called a basis
- any n-vector b can be expressed as a linear combination of them:

$$
b=\beta_{1} a_{1}+\cdots+\beta_{n} a_{n}
$$

for some $\beta_{1}, \ldots, \beta_{n}$

- and these coefficients are unique
- formula above is called expansion of b in the a_{1}, \ldots, a_{n} basis
- example: e_{1}, \ldots, e_{n} is a basis, expansion of b is

$$
b=b_{1} e_{1}+\cdots+b_{n} e_{n}
$$

Orthonormal vectors

- set of n-vectors a_{1}, \ldots, a_{k} are (mutually) orthogonal if $a_{i} \perp a_{j}$ for $i \neq j$
- they are normalized if $\left\|a_{i}\right\|=1$ for $i=1, \ldots, k$
- they are orthonormal if both hold
- can be expressed using inner products as

$$
a_{i}^{T} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- orthonormal sets of vectors are linearly independent
- by independence-dimension inequality, must have $k \leq n$
- when $k=n, a_{1}, \ldots, a_{n}$ are an orthonormal basis

Examples of orthonormal bases

- standard unit n-vectors e_{1}, \ldots, e_{n}
- the 3-vectors

$$
\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

- the 2-vectors shown below

Orthonormal expansion

- if a_{1}, \ldots, a_{n} is an orthonormal basis, we have for any n-vector x

$$
x=\left(a_{1}^{T} x\right) a_{1}+\cdots+\left(a_{n}^{T} x\right) a_{n}
$$

- called orthonormal expansion of x (in the orthonormal basis)
- to verify formula, take inner product of both sides with a_{i}

Orthogonal sets
Let V be a vector space with an inner product.
Definition. Nonzero vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ form an orthogonal set if they are orthogonal to each other: $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$ for $i \neq j$.
If, in addition, all vectors are of unit norm, $\left\|\mathbf{v}_{i}\right\|=1$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is called an orthonormal set.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection
Let V be an inner product space.
Let $\mathbf{x}, \mathbf{v} \in V, \mathbf{v} \neq \mathbf{0}$. Then $\mathbf{p}=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$ is the orthogonal projection of the vector x onto the vector \mathbf{v}. That is, the remainder $\mathbf{o}=\mathbf{x}-\mathbf{p}$ is orthogonal to \mathbf{v}.
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal set of vectors then

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n}
$$

is the orthogonal projection of the vector \mathbf{x} onto the subspace spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. That is, the remainder $\mathbf{o}=\mathbf{x}-\mathbf{p}$ is orthogonal to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

Gram-Schmidt (orthogonalization) algorithm

Let V be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for V. Let

$$
\mathbf{v}_{1}=\mathbf{x}_{1},
$$

$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.

Gram-Schmidt (orthogonalization) algorithm

Any basis
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{k-1} \mathbf{x}_{k-1}\right), 1 \leq k \leq n$;
- the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the same as the span of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$;
- \mathbf{v}_{k} is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k}$, where \mathbf{p}_{k} is the orthogonal projection of the vector \mathbf{x}_{k} on the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\left\|\mathbf{v}_{k}\right\|$ is the distance from \mathbf{x}_{k} to the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$.

Example

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_{1}=(1,2,2), \mathbf{x}_{2}=(-1,0,2), \mathbf{x}_{3}=(0,0,1)$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}=(1,2,2), \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(-1,0,2)-\frac{3}{9}(1,2,2) \\
& =(-4 / 3,-2 / 3,4 / 3), \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2} \\
& =(0,0,1)-\frac{2}{9}(1,2,2)-\frac{4 / 3}{4}(-4 / 3,-2 / 3,4 / 3) \\
& =(2 / 9,-2 / 9,1 / 9) .
\end{aligned}
$$

Example

Now $\mathbf{v}_{1}=(1,2,2), \mathbf{v}_{2}=(-4 / 3,-2 / 3,4 / 3)$,
$\mathbf{v}_{3}=(2 / 9,-2 / 9,1 / 9)$ is an orthogonal basis for \mathbb{R}^{3}

$$
\begin{aligned}
& \left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=9 \Longrightarrow\left\|\mathbf{v}_{1}\right\|=3 \\
& \left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle=4 \Longrightarrow\left\|\mathbf{v}_{2}\right\|=2 \\
& \left\langle\mathbf{v}_{3}, \mathbf{v}_{3}\right\rangle=1 / 9 \Longrightarrow\left\|\mathbf{v}_{3}\right\|=1 / 3 \\
& \mathbf{w}_{1}=\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|=(1 / 3,2 / 3,2 / 3)=\frac{1}{3}(1,2,2), \\
& \mathbf{w}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|=(-2 / 3,-1 / 3,2 / 3)=\frac{1}{3}(-2,-1,2), \\
& \mathbf{w}_{3}=\mathbf{v}_{3} /\left\|\mathbf{v}_{3}\right\|=(2 / 3,-2 / 3,1 / 3)=\frac{1}{3}(2,-2,1) .
\end{aligned}
$$

Matrix-vector product function

- matrix-vector product of $m \times n$ matrix A, n-vector x, denoted $y=A x$, with

$$
y_{i}=A_{i 1} x_{1}+\cdots+A_{\text {in }} x_{n}, \quad i=1, \ldots, m
$$

- for example,

$$
\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4
\end{array}\right]
$$

- matrix-vector multiplication costs $m(2 n-1) \approx 2 m n$ flops (for sparse A, around $2 \mathrm{nnz}(A)$ flops)

Examples

- A is $m \times n$ matrix
- $y=A x$
- n-vector x is input or action
- m-vector y is output or result
- $A_{i j}$ is the factor by which y_{i} depends on x_{j}
- $A_{i j}$ is the gain from input j to output i
- e.g., if A is lower triangular, then y_{i} only depends on x_{1}, \ldots, x_{i}

Hadamard Product

- For two matrices, \mathbf{A}, \mathbf{B}, of the same dimension, $m \times n$ the Hadamard product, $\mathbf{A} \circ \mathbb{B}$, is a matrix, of the same dimension as the operands, with elements given by

$$
(\mathbf{A} \circ \mathbf{B})_{i, j}=(\mathbf{A})_{i, j} \cdot(\mathbf{B})_{i, j}
$$

- For example the Hadamard product for a 3×3 matrix \mathbf{A} with a $3 \times$ 3 matrix \mathbf{B} is:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \circ\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right]=\left[\begin{array}{lll}
A_{11} B_{11} & A_{12} B_{12} & A_{13} B_{13} \\
A_{21} B_{21} & A_{22} B_{22} & A_{23} B_{23} \\
A_{31} B_{31} & A_{32} B_{32} & A_{33} B_{33}
\end{array}\right]
$$

Kronecker Product

- If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is a $p \times q$ matrix, then the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ is the $m p \times n q$ block matrix:

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
A_{11} \mathbf{B} & \cdots & A_{1 n} \mathbf{B} \\
\vdots & \ddots & \vdots \\
A_{m 1} \mathbf{B} & \cdots & A_{m n} \mathbf{B}
\end{array}\right]
$$

- For example, the Kronecker product for a 2×2 matrix \mathbf{A} with a $2 \times$ 3 matrix \mathbf{B} is:

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{llllll}
A_{11} B_{11} & A_{11} B_{12} & A_{11} B_{13} & A_{12} B_{11} & A_{12} B_{12} & A_{12} B_{13} \\
A_{11} B_{21} & A_{11} B_{22} & A_{11} B_{23} & A_{12} B_{21} & A_{12} B_{22} & A_{12} B_{23} \\
A_{21} B_{11} & A_{21} B_{12} & A_{21} B_{13} & A_{22} B_{11} & A_{22} B_{12} & A_{22} B_{13} \\
A_{21} B_{21} & A_{21} B_{22} & A_{21} B_{23} & A_{22} B_{21} & A_{22} B_{22} & A_{22} B_{23}
\end{array}\right]
$$

Matrix-vector product function

- with A an $m \times n$ matrix, define f as $f(x)=A x$
- f is linear:

$$
\begin{aligned}
f(\alpha x+\beta y) & =A(\alpha x+\beta y) \\
& =A(\alpha x)+A(\beta y) \\
& =\alpha(A x)+\beta(A y) \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

- converse is true: if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear, then

$$
\begin{aligned}
f(x) & =f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
& =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right) \\
& =A x
\end{aligned}
$$

with $A=\left[\begin{array}{llll}f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots & f\left(e_{n}\right)\end{array}\right]$

Examples

- reversal: $f(x)=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$

$$
A=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
0 & \cdots & 1 & 0 \\
\vdots & . & \vdots & \vdots \\
1 & \cdots & 0 & 0
\end{array}\right]
$$

- running sum: $f(x)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots, x_{1}+x_{2}+\cdots+x_{n}\right)$

$$
A=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & 0 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

Affine functions

- function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine if it is a linear function plus a constant, i.e.,

$$
f(x)=A x+b
$$

- same as:

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all x, y, and α, β with $\alpha+\beta=1$

- can recover A and b from f using

$$
\begin{aligned}
A & =\left[f\left(e_{1}\right)-f(0) \quad f\left(e_{2}\right)-f(0) \quad \cdots \quad f\left(e_{n}\right)-f(0)\right] \\
b & =f(0)
\end{aligned}
$$

- affine functions sometimes (incorrectly) called linear

Systems of linear equations

- set (or system) of m linear equations in n variables x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n} & =b_{1} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n} & =b_{2} \\
& \vdots \\
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n} & =b_{m}
\end{aligned}
$$

- n-vector x is called the variable or unknowns
- $A_{i j}$ are the coefficients; A is the coefficient matrix
- b is called the right-hand side
- can express very compactly as $A x=b$

Systems of linear equations

- systems of linear equations classified as
- under-determined if $m<n$ (A wide)
- square if $m=n$ (A square)
- over-determined if $m>n$ (A tall)
- x is called a solution if $A x=b$
- depending on A and b, there can be
- no solution
- one solution
- many solutions

Left inverse

- a number x that satisfies $x a=1$ is called the inverse of a
- inverse (i.e., $1 / a$) exists if and only if $a \neq 0$, and is unique
- a matrix X that satisfies $X A=I$ is called a left inverse of A
- if a left inverse exists we say that A is left-invertible
- example: the matrix

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right]
$$

has two different left inverses:

$$
B=\frac{1}{9}\left[\begin{array}{rrr}
-11 & -10 & 16 \\
7 & 8 & -11
\end{array}\right], \quad C=\frac{1}{2}\left[\begin{array}{rrr}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right]
$$

Left inverse and column independence

- if A has a left inverse C then the columns of A are linaerly independent
- to see this: if $A x=0$ and $C A=I$ then

$$
0=C 0=C(A x)=(C A) x=I x=x
$$

- we'll see later the converse is also true, so
a matrix is left-invertible if and only if its columns are linearly independent
- matrix generalization of
a number is invertible if and only if it is nonzero
- so left-invertible matrices are tall or square

Solving linear equations with a left inverse

- suppose $A x=b$, and A has a left inverse C
- then $C b=C(A x)=(C A) x=I x=x$
- so multiplying the right-hand side by a left inverse yields the solution

Right inverse

- a matrix X that satisfies $A X=I$ is a right inverse of A
- if a right inverse exists we say that A is right-invertible
- A is right-invertible if and only if A^{T} is left-invertible:

$$
A X=I \Longleftrightarrow(A X)^{T}=I \Longleftrightarrow X^{T} A^{T}=I
$$

- so we conclude

A is right-invertible if and only if its rows are linearly independent

- right-invertible matrices are wide or square

Solving linear equations with a right inverse

- suppose A has a right inverse B
- consider the (square or underdetermined) equations $A x=b$
- $x=B b$ is a solution:

$$
A x=A(B b)=(A B) b=I b=b
$$

- so $A x=b$ has a solution for any b

Generalized inverse

- if A has a left and a right inverse, they are unique and equal (and we say that A is invertible)
- so A must be square
- to see this: if $A X=I, Y A=I$

$$
X=I X=(Y A) X=Y(A X)=Y I=Y
$$

- we denote them by A^{-1} :

$$
A^{-1} A=A A^{-1}=I
$$

- inverse of inverse: $\left(A^{-1}\right)^{-1}=A$

Solving square systems of linear equations

- suppose A is invertible
- for any $b, A x=b$ has the unique solution

$$
x=A^{-1} b
$$

- matrix generalization of simple scalar equation $a x=b$ having solution $x=(1 / a) b$ (for $a \neq 0)$
- simple-looking formula $x=A^{-1} b$ is basis for many applications

Invertible matrices

the following are equivalent for a square matrix A :

- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- A has a left inverse
- A has a right inverse
if any of these hold, all others do

Pseudo-inverse of a tall matrix

- the pseudo-inverse of A with independent columns is

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

- it is a left inverse of A :

$$
A^{\dagger} A=\left(A^{T} A\right)^{-1} A^{T} A=\left(A^{T} A\right)^{-1}\left(A^{T} A\right)=I
$$

- reduces to A^{-1} when A is square:

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}=A^{-1} A^{-T} A^{T}=A^{-1} I=A^{-1}
$$

Pseudo-inverse of a wide matrix

- if A is wide, with linearly independent rows, $A A^{T}$ is invertible
- pseudo-inverse is defined as

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

- A^{\dagger} is a right inverse of A :

$$
A A^{\dagger}=A A^{T}\left(A A^{T}\right)^{-1}=I
$$

- reduces to A^{-1} when A is square:

$$
A^{T}\left(A A^{T}\right)^{-1}=A^{T} A^{-T} A^{-1}=A^{-1}
$$

Least squares problem

- suppose $m \times n$ matrix A is tall, so $A x=b$ is over-determined
- for most choices of b, there is no x that satisfies $A x=b$
- residual is $r=A x-b$
- least squares problem: choose x to minimize $\|A x-b\|^{2}$
- $\|A x-b\|^{2}$ is the objective function
- \hat{x} is a solution of least squares problem if

$$
\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2}
$$

for any n-vector x

- idea: \hat{x} makes residual as small as possible, if not 0
- also called regression (in data fitting context)

Least squares problem

- \hat{x} called least squares approximate solution of $A x=b$
- \hat{x} is sometimes called 'solution of $A x=b$ in the least squares sense'
- this is very confusing
- never say this
- do not associate with people who say this
- \hat{x} need not (and usually does not) satisfy $A \hat{x}=b$
- but if \hat{x} does satisfy $A \hat{x}=b$, then it solves least squares problem

Least squares problem - column interpretation

- suppose a_{1}, \ldots, a_{n} are columns of A
- then

$$
\|A x-b\|^{2}=\left\|\left(x_{1} a_{1}+\cdots+x_{n} a_{n}\right)-b\right\|^{2}
$$

- so least squares problem is to find a linear combination of columns of A that is closest to b
- if \hat{x} is a solution of least squares problem, the m-vector

$$
A \hat{x}=\hat{x}_{1} a_{1}+\cdots+\hat{x}_{n} a_{n}
$$

is closest to b among all linear combinations of columns of A

Least squares problem - row interpretation

- suppose $\tilde{a}_{1}^{T}, \ldots, \tilde{a}_{m}^{T}$ are rows of A
- residual components are $r_{i}=\tilde{a}_{i}^{T} x-b_{i}$
- least squares objective is

$$
\|A x-b\|^{2}=\left(\tilde{a}_{1}^{T} x-b_{1}\right)^{2}+\cdots+\left(\tilde{a}_{m}^{T} x-b_{m}\right)^{2}
$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
- solving $A x=b$ is making all residuals zero
- least squares attempts to make them all small

Example

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

- $A x=b$ has no solution

- least squares problem is to choose x to minimize

$$
\|A x-b\|^{2}=\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}
$$

- least squares approximate solution is $\hat{x}=(1 / 3,1 / 3)$ (say, via calculus)
- $\|A \hat{x}-b\|^{2}=2 / 3$ is smallest posible value of $\|A x-b\|^{2}$
- $A \hat{x}=(2 / 3,-2 / 3,-2 / 3)$ is linear combination of columns of A closest to b

Solution of least squares problem

- we make one assumption: A has linearly independent columns
- this implies that Gram matrix $A^{T} A$ is invertible
- unique solution of least squares problem is

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b=A^{\dagger} b
$$

- cf. $x=A^{-1} b$, solution of square invertible system $A x=b$

Matrix Calculus - The Gradient

- Let a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ takes as input a matrix A of size $m \times n$ and returns a real value.
- Then the gradient of f :

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1}} \\
\frac{\partial f(A)}{\partial A_{1}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

Matrix Calculus - The Gradient

- Every entry in the matrix is: $\left.\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}$.
-The size of $\nabla_{A} f(A)$ is always the same as the size of A.
- So if A is just a vector x :

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\frac{\partial}{\vdots} \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

$$
\left.\left.f(x)=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right]^{T} \right\rvert\, \begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\rfloor
$$

- Find: $\frac{\partial f(x)}{\partial x_{k}}=$?

$$
\nabla_{x} f(x)=?
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n} b_{i} x_{i} \\
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} .
\end{gathered}
$$

- From this we can conclude that: $\nabla_{x} b^{T} x=b$.

Matrix Calculus - The Gradient

- Properties
- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$.
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$.

Matrix Calculus - The Hessian

-The Hessian matrix with respect to x , written $\nabla_{x}^{2} f(x)$ or simply as H is the $\mathrm{n} \times \mathrm{n}$ matrix of partial derivatives

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} x_{2} x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

Matrix Calculus - The Hessian

- Each entry can be written as: $\left.\quad \nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.
- The Hessian is always symmetric, $\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}$.
-This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is continuous.

Matrix Calculus - The Hessian

- Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

Matrix Calculus - The Hessian

- Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_{1}}$

Geometric transformations

- many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication $y=A x$
- for example, rotation by θ :

$$
y=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] x
$$

(to get the entries, look at $A e_{1}$ and $A e_{2}$)

Selectors

- an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$
A=\left[\begin{array}{c}
e_{k_{1}}^{T} \\
\vdots \\
e_{k_{m}}^{T}
\end{array}\right]
$$

- multiplying by A selects entries of x :

$$
A x=\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{m}}\right)
$$

- example: the $m \times 2 m$ matrix

$$
A=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

'down-samples' by 2 : if x is a $2 m$-vector then $y=A x=\left(x_{1}, x_{3}, \ldots, x_{2 m-1}\right)$

- other examples: image cropping, permutation, ...

Inner product interpretation

- with a_{i}^{T} the rows of A, b_{j} the columns of B, we have

$$
A B=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{n} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{n} \\
\vdots & \vdots & & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{n}
\end{array}\right]
$$

- so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- let A be an $m \times n$ matrix with columns a_{1}, \ldots, a_{n}
- the Gram matrix of A is

$$
G=A^{T} A=\left[\begin{array}{cccc}
a_{1}^{T} a_{1} & a_{1}^{T} a_{2} & \cdots & a_{1}^{T} a_{n} \\
a_{2}^{T} a_{1} & a_{2}^{T} a_{2} & \cdots & a_{2}^{T} a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{T} a_{1} & a_{n}^{T} a_{2} & \cdots & a_{n}^{T} a_{n}
\end{array}\right]
$$

- Gram matrix gives all inner products of columns of A
- example: $G=A^{T} A=I$ means columns of A are orthonormal

Complexity

- to compute $C_{i j}=(A B)_{i j}$ is inner product of p-vectors
- so total required flops is $(m n)(2 p)=2 m n p$ flops
- multiplying two 1000×1000 matrices requires 2 billion flops
- ... and can be done in well under a second on current computers

