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Today’s Objectives

• Review of linear algebra

Disclaimer: Material used: 

• Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron 
Courville

• Introduction to Applied Linear Algebra: Vectors, Matrices, 
and Least Squares, Stephen Boyd ,Lieven Vandenberghe

http://vmls-book.stanford.edu/
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Vectors
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Zeros, ones and unit vectors
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Sparsity
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Linear combinations
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Example
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Flop counts
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Complexity of vector addition, inner product
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Superposition and linear functions
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The inner product function
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. . .and all linear functions are inner products
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Affine functions
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Linear versus affine functions
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First-order Taylor approximation
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Example
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Regression model
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Example
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Example
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Example
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Linear dependence

21Spring Semester 2019
CS-570 Statistical Signal Processing

University of Crete, Computer Science Department



Example
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Linear independence
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Linear combinations of linearly independent 
vectors
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Independence-dimension inequality
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Basis
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Orthonormal vectors
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Examples of orthonormal bases
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Orthonormal expansion
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Orthogonal sets
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Orthogonal projection
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Gram–Schmidt (orthogonalization) algorithm
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Gram–Schmidt (orthogonalization) algorithm
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Example
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Example
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Matrix-vector product function

36Spring Semester 2019
CS-570 Statistical Signal Processing

University of Crete, Computer Science Department



Examples
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Hadamard Product

• For two matrices, 𝐀, 𝐁, of the same dimension, 𝑚 × 𝑛 the 
Hadamard product, 𝐀 ∘ 𝐁, is a matrix, of the same 
dimension as the operands, with elements given by

𝐀 ∘ 𝐁 𝑖,𝑗 = 𝐀 𝑖,𝑗 ∙ 𝐁 𝑖,𝑗

• For example the Hadamard product for a 3 × 3 matrix 𝐀 with a 3 ×
3 matrix 𝐁 is:

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

∘
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

=

𝐴11𝐵11 𝐴12𝐵12 𝐴13𝐵13
𝐴21𝐵21 𝐴22𝐵22 𝐴23𝐵23
𝐴31𝐵31 𝐴32𝐵32 𝐴33𝐵33
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Kronecker Product

• If 𝐀 is an 𝑚 × 𝑛 matrix and 𝐁 is a 𝑝 × 𝑞 matrix, then the 
Kronecker product 𝐀⊗𝐁 is the 𝑚𝑝 × 𝑛𝑞 block matrix:

𝐀⊗𝐁 =
𝐴11𝐁 ⋯ 𝐴1𝑛𝐁
⋮ ⋱ ⋮

𝐴𝑚1𝐁 ⋯ 𝐴𝑚𝑛𝐁

• For example, the Kronecker product for a 2 × 2 matrix 𝐀 with a 2 ×
3 matrix 𝐁 is:

𝐀⊗𝐁 =

𝐴11𝐵11 𝐴11𝐵12 𝐴11𝐵13
𝐴11𝐵21 𝐴11𝐵22 𝐴11𝐵23

𝐴12𝐵11 𝐴12𝐵12 𝐴12𝐵13
𝐴12𝐵21 𝐴12𝐵22 𝐴12𝐵23

𝐴21𝐵11 𝐴21𝐵12 𝐴21𝐵13
𝐴21𝐵21 𝐴21𝐵22 𝐴21𝐵23

𝐴22𝐵11 𝐴22𝐵12 𝐴22𝐵13
𝐴22𝐵21 𝐴22𝐵22 𝐴22𝐵23
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Matrix-vector product function
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Examples
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Affine functions
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Systems of linear equations
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Systems of linear equations
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Left inverse

45Spring Semester 2019
CS-570 Statistical Signal Processing

University of Crete, Computer Science Department



Left inverse and column independence
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Solving linear equations with a left inverse
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Right inverse
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Solving linear equations with a right inverse
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Generalized inverse
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Solving square systems of linear equations
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Invertible matrices
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Pseudo-inverse of a tall matrix
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Pseudo-inverse of a wide matrix
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Least squares problem
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Least squares problem
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Least squares problem – column 
interpretation
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Least squares problem – row interpretation
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Example
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Solution of least squares problem
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Matrix Calculus – The Gradient

• Let a function                     takes as input a matrix 
A of size m × n and returns a real value.

•Then the gradient of f:
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Matrix Calculus – The Gradient

•Every entry in the matrix is:

•The size of ∇Af(A) is always the same as the size of 
A. 

•So if A is just a vector x:
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Exercise

•Example:

•Find:
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Exercise

•Example:

•From this we can conclude that:
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Matrix Calculus – The Gradient

•Properties
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Matrix Calculus – The Hessian

•The Hessian matrix with respect to x, written 
or simply as H is the n × n matrix of partial 
derivatives
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Matrix Calculus – The Hessian

•Each entry can be written as:

•The Hessian is always symmetric, because

•This is known as Schwarz's theorem: The order of 
partial derivatives don’t matter as long as the 
second derivative exists and is continuous.
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Matrix Calculus – The Hessian

•Note that the hessian is not the gradient of whole 
gradient of a vector (this is not defined). It is 
actually the gradient of every entry of the gradient 
of the vector.
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Matrix Calculus – The Hessian

•Eg, the first column is the gradient of 
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Geometric transformations
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Selectors
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Inner product interpretation
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Gram matrix
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Complexity
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